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The analysis of the self-induced velocity of a single helical vortex (Boersma &
Wood 1999) is extended to include equally spaced multiple vortices. This arrangement
approximates the tip vortices in the far wake of multi-bladed wind turbines, propellers,
or rotors in ascending, descending, or hovering flight. The problem is reduced to
finding, from the Biot–Savart law, the additional velocity of a helix due to an identical
helix displaced azimuthally. The resulting Biot–Savart integral is further reduced to a
Mellin–Barnes integral representation which allows the asymptotic expansions to be
determined for small and for large pitch. The Biot–Savart integral is also evaluated
numerically for a total of two, three and four vortices over a range of pitch values.
The previous finding that the self-induced velocity at small pitch is dominated by
a term inversely proportional to the pitch carries over to multiple vortices. It is
shown that a far wake dominated by helical tip vortices is consistent with the one-
dimensional representation that leads to the Betz limit on the power output of wind
turbines. The small-pitch approximation then allows the determination of the blade’s
bound vorticity for optimum power extraction. The present analysis is shown to give
reasonable estimates for the vortex circulation in experiments using a single hovering
rotor and a four-bladed propeller.

1. Introduction
The self-induced motion of an infinite helical vortex has recently been investigated

in some detail. Ricca (1994) formulated the problem in two ways: first, as the limiting
case of the exact solution of Hardin (1982) for the inviscid flow outside a helical
line vortex (of zero thickness); secondly, using the Moore–Saffman (MS) procedure
(Moore & Saffman 1972) for applying the Biot–Savart law to a vortex whose core
radius is small compared to its radius of curvature. The MS procedure removes
the curvature-induced singularity by use of an osculating vortex ring of the same
core radius; see e.g. Saffman (1992). Ricca (1994) evaluated numerically the resulting
integrals for the binormal velocity of the vortex, the most important velocity since
helical vortices translate without deformation. Kuibin & Okulov (1998) determined
the asymptotic expansion for the velocity at small values of the vortex pitch, p. This
expansion was slightly refined by Boersma & Wood (1999, hereinafter referred to as
BW) on the basis of their closed-form expression for the binormal velocity that is
valid for all values of p. They also proved the close connection between the results of
Ricca’s (1994) two formulations.
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The remarkable outcome of these investigations is that the ‘remainder’ term – the
contribution to the self-induced velocity from the parts of the vortex that do not
contribute to the curvature singularity – dominates the curvature term at small values
of p. This is in contrast to the vortex ring, for example, whose velocity is due almost
entirely to its curvature. Kuibin & Okulov (1998) and BW showed that the remainder
term for a helical vortex behaves like p−1 as p ↓ 0.

In practice, however, it is much more common that multiple helical vortices occur
in the wakes of wind turbines, propellers, and ascending, descending, or hovering
helicopters; an N-bladed rotor produces N nominally identical helical vortices, spaced
2π/N radians apart. In many cases the pitch of these tip vortices is sufficiently small
for the asymptotic form of the remainder to be useful. The purpose of the present
work is to extend the analysis of BW to the general problem of N equally spaced
infinite helical vortices. Our major findings are that the leading p−1-term found for a
single vortex carries over to a term N/p for multiple vortices and the dependence on
the azimuthal spacing between the vortices is of higher order.

The general problem is linear and is reduced, in the next section, to that of finding
the binormal velocity induced on a helical vortex by an identical vortex that is
azimuthally displaced α radians from the first vortex. The velocity is obtained directly
from the Biot–Savart law, without using the MS procedure, as the displaced vortex
does not introduce any further singularities. In Appendix A we demonstrate the
equivalence of this formulation and the one based on Hardin’s (1982) solution. The
next section provides the large- and small-pitch asymptotic expansions for the integral
expressing the binormal velocity. This is followed by a description of the numerical
evaluation of the integral for α = π/2, 2π/3 and π (needed in the most common cases
N = 2, 3, and 4), based on the treatment of BW. Then, some of the implications of the
analysis for the modelling of rotor wakes are presented, followed by the conclusions.

2. Reduction of the general problem
The general problem is to determine the velocity induced by an arrangement of N

identical helical vortices, spaced 2π/N radians apart. Of main interest is the binormal
velocity induced at a point X on one of the helices. This velocity is given by the
sum of the self-induced contribution and the contributions of the remaining N − 1
vortices. In BW the self-induced contribution to the binormal velocity was expressed
in terms of the integral W (p), defined in BW (4.1) (BW before an equation number
denoting a formula from Boersma & Wood 1999) by

W (p) =

∫ ∞
0

{
sin2 t

(p2t2 + sin2 t)3/2
− 1

(p2 + 1)3/2

H(1/2− t)
t

}
dt, (2.1)

in which H(·) denotes the unit step function. The remaining problem can be reduced
to that of finding the binormal velocity induced by a single helical vortex H at the
point X of an identical helix that is azimuthally displaced α radians from H, where
0 < α < 2π (actually, α = 2πj/N with j = 1, 2, . . . , N − 1). Let the infinite helix H
have the parametric representation (in Cartesian coordinates)

X ∗ = (x, y, z) = (R cos θ, R sin θ, pRθ) (−∞ < θ < ∞) (2.2)

where R is the radius and p is the (normalized) pitch of the helical vortex. Without
loss of generality, we consider the point X displaced α radians from the point (R, 0, 0)
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of H. Then X has Cartesian coordinates

X = (R cos α,−R sin α, 0). (2.3)

Following Ricca (1994, equation (1.1)) the induced velocity U = U (X ) at X is given
by the Biot–Savart law

U (X) =
Γ

4π

∫
H
t(X ∗)× (X − X ∗)
|X − X ∗|3 ds, (2.4)

where Γ is the vortex circulation and s denotes arclength along the helixH. The unit
tangent vector t(X ∗) to H has Cartesian components

t(X ∗) =
1

(p2 + 1)1/2
(− sin θ, cos θ, p), (2.5)

while ds = (p2 + 1)1/2Rdθ. Take the inner product of U (X ) and the binormal b(X ) of
the displaced helix at X , given by

b(X ) =
p

(p2 + 1)1/2

(
− sin α,− cos α,

1

p

)
. (2.6)

On evaluation of the vector and inner products, the required binormal velocity is
found to be

Ub = b(X ) ·U (X ) =
Γ

4πR
Ib(α, p), (2.7)

where the normalized or dimensionless binormal velocity Ib(α, p) is given by

Ib(α, p) =
1

(p2 + 1)1/2

∫ ∞
−∞

p2θ sin(θ + α) + (1− p2)[1− cos(θ + α)]

[ p2θ2 + 2{1− cos(θ + α)}]3/2
dθ. (2.8)

Because the helix H is infinite, the result (2.7) is valid at all points of the displaced
helix through X .

By use of

p2θ sin(θ + α)− 2p2[1− cos(θ + α)]

[ p2θ2 + 2{1− cos(θ + α)}]3/2
= − d

dθ

(
p2θ

[ p2θ2 + 2{1− cos(θ + α)}]1/2

)
in the integrand of (2.8), we express Ib(α, p) as

Ib(α, p) = (p2 + 1)1/2W (α, p)− 2p

(p2 + 1)1/2
, (2.9)

where, with the substitution θ = 2t,

W (α, p) =
1

2

∫ ∞
−∞

sin2(t+ α/2)

[ p2t2 + sin2(t+ α/2)]3/2
dt, 0 < α < 2π. (2.10)

It is believed that the integral W (α, p) cannot be evaluated in closed form. Therefore,
in the next section we consider the asymptotics of W (α, p) both for small p and for
large p. From (2.10) it is obvious that

W (α, p) = W (2π− α, p), (2.11)

which means, for example, that the second and third vortices induce the same velocity
on the first when N = 3. For α = 0 the integral (2.10) becomes divergent. Thus before
taking the limit of W (α, p) as α ↓ 0, one should subtract a proper singularity. At the



152 D. H. Wood and J. Boersma

end of Appendix B it is shown that (see (B 32))

lim
α↓0 [W (α, p) + log[2 sin(α/2)](p2 + 1)−3/2]

= W (p) + (p2 + 1)−3/2[ p2 − 1 + log 2 + log(p2 + 1)− log p], (2.12)

where W (p) is given by (2.1). W (p) can be considered as the finite part of the limit
of W (α, p) as α ↓ 0.

BW also discussed in depth the relationship between the induced velocity obtained
from the Biot–Savart law and that from Hardin’s (1982) formulation. There is a
small difference between the two results due to the requirement in the MS procedure
to account for the finite size and particular structure of the vortex core, and the
ignoring of those aspects by Hardin. In the present case, the velocity required is
not self-induced and the two methods should give the same result. It is shown in
Appendix A that the induced velocity from Hardin’s (1982) solution reduces to (2.9).

3. The asymptotics of W (α, p)

In this section we determine the asymptotic expansions of W (α, p) for small (p ↓ 0)
and large (p→∞) pitch. Both expansions are obtained from a Mellin–Barnes integral
representation of W (α, p), as derived in Appendix B; see (B 23) and (B 24). The limit
for large pitch is often called the Kelvin limit; see e.g. Ricca (1994, formula (3.20)).
We will demonstrate that for this limit there is a larger difference between W (α, p)
and W (p), than there is at small pitch. On the other hand, it is shown in § 5 that the
application of the analysis to the wakes of propellers, wind turbines, and ascending,
descending, or hovering rotors, generally involves the small-pitch limit.

3.1. W (α, p) for small pitch (p ↓ 0)

We start from the Mellin–Barnes integral representation (B 24) for W (α, p). The
integrand in (B 24) is analytic to the left of the integration contour, except for simple
poles at z = −2k, k = 1, 2, 3, . . ., with residues

Resz=−2k

Γ(z/2)Γ(3/2− z/2)

2Γ(3/2)
L∗(z)p−z = (−1)k

(3/2)k
k!

L∗(−2k)p2k, (3.1)

where Γ(·) denotes the gamma function and Pochhammer’s symbol (3/2)k is defined
by

(3/2)0 = 1, (3/2)k = 3
2
· 5

2
· · · (k + 1

2
) for k = 1, 2, 3, . . . .

Since L∗(0) = 0 from (B 22), the singularity of the integrand at z = 0 is removable. By
closing the contour in (B 24) to the left, we are led to the representation of W (α, p)
by the residue series

W (α, p) ∼ 1

p
− log[2 sin(α/2)] (p2 + 1)−3/2

+

∞∑
k=1

(−1)k
(3/2)k
k!

L∗(−2k)p2k (p ↓ 0). (3.2)

This result forms the complete asymptotic expansion of W (α, p) for small p.
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We now introduce the generalized Clausen function of odd order, Cl2k+1(θ), defined
by

Cl2k+1(θ) =

∞∑
n=1

cos(nθ)

n2k+1
; (3.3)

see Lewin (1981, p. 191). This function is employed in the evaluation of L∗(−2k) for
k = 1, 2, 3. Starting from (B 22) we have

L∗(−2) =

∞∑
n=1

[
Γ(n+ 3/2)

Γ(n− 1/2)

1

n3
− 1

n

]
cos(nα) =

∞∑
n=1

[
n2 − 1/4

n3
− 1

n

]
cos(nα)

= −1

4

∞∑
n=1

cos(nα)

n3
= − 1

4
Cl3(α),

L∗(−4) =

∞∑
n=1

[
(n2 − 1/4)(n2 − 9/4)

n5
− 1

n

]
cos(nα) = − 5

2
Cl3(α) + 9

16
Cl5(α),

L∗(−6) =

∞∑
n=1

[
(n2 − 1/4)(n2 − 9/4)(n2 − 25/4)

n7
− 1

n

]
cos(nα)

= − 35
4

Cl3(α) + 259
16

Cl5(α)− 225
64

Cl7(α).

By use of these values in (3.2) we obtain the small-p expansion

W (α, p) = p−1 − log[2 sin(α/2)](p2 + 1)
−3/2

+ 3
8
Cl3(α)p

2

+ 15
8

[− 5
2
Cl3(α) + 9

16
Cl5(α)]p

4

− 35
16

[− 35
4

Cl3(α) + 259
16

Cl5(α)− 225
64

Cl7(α)]p
6 + O(p8) (p ↓ 0). (3.4)

We note the following special values of Cl2k+1(θ):

Cl2k+1(0) = ζ(2k + 1), Cl2k+1(π) = −(1− 2−2k)ζ(2k + 1), (3.5)

where ζ(·) denotes the Riemann zeta function. For later use, and in view of (2.11), we
also note from Lewin (1981, p. 198) that

Cl2k+1(π/2) = Cl2k+1(3π/2) = −2−2k−1(1− 2−2k)ζ(2k + 1),

Cl2k+1(π/3) = Cl2k+1(5π/3) = 1
2
(1− 2−2k)(1− 3−2k)ζ(2k + 1),

Cl2k+1(2π/3) = Cl2k+1(4π/3) = − 1
2
(1− 3−2k)ζ(2k + 1).

 (3.6)

The values in (3.5) and (3.6) are sufficient to evaluate (3.4) for 2-, 3- and 4-bladed
rotors. In general, the following relation from Lewin (1981, p. 198) may be useful for
an N-bladed rotor for which the vortices are spaced 2π/N apart:

N−1∑
j=0

Cl2k+1

(
2πj

N

)
=

1

N2k
Cl2k+1(0) =

1

N2k
ζ(2k + 1), (3.7)

showing that there can be significant advantages in considering the effects of the N
vortices together.
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3.2. W (α, p) for large pitch (p→∞)

For this case, it is easier to start from the Mellin–Barnes integral representation (B 23)
rather than (B 24). The integrand in (B 23) is analytic to the right of the integration
contour, except for double poles at z = 2k + 1, k = 1, 2, 3, . . .. By closing the contour
to the right, we are led to the representation of W (α, p) by the residue series

W (α, p) ∼ 1

p
−

∞∑
k=1

Resz=2k+1

[
Γ(z/2)Γ(3/2− z/2)

2 Γ(3/2)
L(z) p−z

]
(p→∞). (3.8)

This result forms the complete asymptotic expansion of W (α, p) for large p. It does
not appear possible to obtain simple, general, closed-form expressions for the residues.
Instead, we consider only the cases k = 1 and k = 2, corresponding to the residues at
z = 3 and z = 5.

(i) Around z = 3 we have the Laurent expansions

Γ(z/2)Γ(3/2− z/2)

2 Γ(3/2)
= − 1

z − 3
[1 + (1− log 2)(z − 3) + O((z − 3)2)],

L(z) =
Γ(3/2− z/2)

Γ(3/2 + z/2)
cos α+

∞∑
n=2

Γ(n− 1)

Γ(n+ 2)
n2 cos(nα) + O(z − 3)

= − cos α

z − 3
[1− ( 3

4
− E)(z − 3)] +

∞∑
n=2

n

n2 − 1
cos(nα) + O(z − 3),

where E = 0.5772 . . . is Euler’s constant and the final series can be evaluated as

∞∑
n=2

n

n2 − 1
cos(nα) =

1

2
Re

[
eiα

∞∑
n=1

einα

n
+ e−iα

∞∑
n=3

einα

n

]

= − cos α log[2 sin(α/2)]− 1
2
− 1

4
cos α.

Then the residue at z = 3 is found to be

Resz=3

[
Γ(z/2)Γ(3/2− z/2)

2Γ(3/2)
L(z)p−z

]
= [cos α{log[sin(α/2)] + E − log p}

+ 1
2
(1 + cos α)]p−3. (3.9)

(ii) Around z = 5 we have the Laurent expansions

Γ(z/2)Γ(3/2− z/2)

2Γ(3/2)
=

3/2

z − 5
[1 + ( 5

6
− log 2)(z − 5) + O((z − 5)2)],

L(z) =
Γ(3/2− z/2)

Γ(3/2 + z/2)
cos α+

Γ(5/2− z/2)

Γ(5/2 + z/2)

cos(2α)

21−z +

∞∑
n=3

Γ(n− 2)

Γ(n+ 3)
n4 cos(nα)+O(z − 5)

=
cos α

3(z − 5)
[1− ( 17

12
− E)(z − 5)]− 4 cos(2α)

3(z − 5)

[
1 +

(
−25

24
+ log 2 + E

)
(z − 5)

]

+

∞∑
n=3

n3

(n2 − 1)(n2 − 4)
cos(nα) + O(z − 5),
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where the final series can be evaluated as
∞∑
n=3

n3

(n2 − 1)(n2 − 4)
cos(nα)

= Re

[
− 1

6
eiα

∞∑
n=2

einα

n
− 1

6
e−iα

∞∑
n=4

einα

n
+ 2

3
e2iα

∞∑
n=1

einα

n
+ 2

3
e−2iα

∞∑
n=5

einα

n

]

= 1
3
[cos α− 4 cos(2α)] log[2 sin(α/2)]− 1

6
− 29

36
cos α+ 1

18
cos(2α).

Then the residue at z = 5 is found to be

Res
z=5

[
Γ(z/2)Γ(3/2− z/2)

2Γ(3/2)
L(z)p−z

]
= [ 1

2
[cos α− 4 cos(2α)]{log[sin(α/2)] + E − log p}

− 1
4
− 3

2
cos α+ ( 1

2
− 2 log 2) cos(2α)]p−5. (3.10)

Substitution of (3.9) and (3.10) into (3.8) yields the large-p expansion

W (α, p) = p−1 − cos α{log[sin(α/2)] + E − log p}p−3 − 1
2
(1 + cos α)p−3

− 1
2
[cos α− 4 cos(2α)]{log[sin(α/2)] + E − log p}p−5

+[ 1
4

+ 3
2

cos α+ (− 1
2

+ 2 log 2) cos(2α)]p−5 + O(p−7 log p) (p→∞). (3.11)

The most interesting feature of (3.11) is the leading term p−1 which is absent from
the large-p expansion of W (p) as presented in BW (4.9); the latter expansion has a
leading term (−E + 3/2)p−3. The small-p expansions of W (α, p) and W (p) both have
a leading term p−1; see (3.4) and BW (4.22). In both expansions of W (α, p), the pitch
dependence is more important than the α-dependence. It has been verified that as
α ↓ 0, the large-p expansion (3.11) of W (α, p) becomes the large-p expansion of W (p)
from BW (4.9), whereby the limit is taken in conformity with (2.12). A similar check
was made for the small-p expansions (3.4) and BW (4.22).

4. The numerical evaluation of W (α, p)

The method for numerically evaluating W (α, p) is a straightforward extension of
the method described in BW, § 4, for the evaluation of W (p). We write W (α, p) as

W (α, p) =

M−1∑
k=0

Ak(α, p) +WM(α, p), (4.1)

where

Ak(α, p) =
1

2

∫ π

0

sin2 t[{p2(t+ kπ+ α/2)2 + sin2 t}−3/2

+{p2(t+ kπ− α/2)2 + sin2 t}−3/2] dt (4.2)

and

WM(α, p) =
1

2

∫ ∞
Mπ

sin2 t[{p2(t+α/2)2 +sin2 t}−3/2 +{p2(t−α/2)2 +sin2 t}−3/2] dt. (4.3)

Here, M is an integer such that (Mπ−α/2)p > 1. The integrals Ak(α, p) are calculated
by adaptive quadrature, while WM(α, p) is evaluated by an analytic approximation.
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p W (p) W (π/2, p) W (2π/3, p) W (π, p)

0.01 0.957022× 102 0.996535× 102 0.994508× 102 0.993069× 102

0.05 0.173173× 102 0.196546× 102 0.194523× 102 0.193086× 102

0.1 0.801822× 101 0.965819× 101 0.945703× 101 0.931407× 101

0.2 0.370710× 101 0.467226× 101 0.447767× 101 0.433908× 101

0.3 0.239240× 101 0.302815× 101 0.284996× 101 0.272379× 101

0.4 0.174543× 101 0.222381× 101 0.206975× 101 0.196213× 101

0.5 0.134138× 101 0.175584× 101 0.162671× 101 0.153777× 101

0.6 0.105695× 101 0.145425× 101 0.134689× 101 0.127372× 101

0.7 0.844909 0.124544× 101 0.115576× 101 0.109502× 101

0.8 0.682350 0.109273× 101 0.101707× 101 0.965957
0.9 0.555822 0.976115 0.911533 0.867901
1.0 0.456367 0.883919 0.828167 0.790427
2.0 0.928365× 10−1 0.468166 0.448986 0.435385
3.0 0.308916× 10−1 0.321010 0.311638 0.304712
4.0 0.136084× 10−1 0.244085 0.238716 0.234623
5.0 0.711198× 10−2 0.196740 0.193348 0.190702
6.0 0.416244× 10−2 0.164690 0.162397 0.160576
7.0 0.263927× 10−2 0.141572 0.139943 0.138630
8.0 0.177602× 10−2 0.124120 0.122917 0.121935
9.0 0.125119× 10−2 0.110482 0.109567 0.108812

10.0 0.914128× 10−3 0.995357× 10−1 0.988208× 10−1 0.982267× 10−1

Table 1. Numerical evaluation of W (p) and W (α, p) for α = π/2, 2π/3, π, and the values of p
indicated. The results for W (p) were taken from BW, table 1.

The quadrature is based on repeated bisection of the interval of integration [0,π]
using the Gauss–Kronrod rule as described in BW. To obtain an approximation for
WM(α, p), the integrand in (4.3) is expanded in powers of p−1 and the power series is
integrated term by term. Only the first two terms are retained and these terms are
further evaluated through repeated integration by parts. As a result we find

WM(α, p) = 1
2
(B+

0 + B−0 )p−3 − 3
4
(B+

1 + B−1 )p−5 + ∆, (4.4)

where ∆ is the error, and

B±0 = 1
4
(Mπ± α/2)−2 − 3

8
(Mπ± α/2)−4 + 15

8
(Mπ± α/2)−6, (4.5)

B±1 = 3
32

(Mπ± α/2)−4 − 75
128

(Mπ± α/2)−6. (4.6)

The results (4.4), (4.5) and (4.6) correspond to BW (4.35), (4.38) and (4.40), respectively.
From the error analysis in BW, § 4, which gives an upper bound for ∆, it follows that
an accuracy of six significant digits can be achieved by selecting M as the smallest
integer such that Mπ− α/2 > 10 and (Mπ− α/2)p > 10.

For the same values of p as in table 1 of BW, the present table 1 gives W (p) and
W (α, p) for α = π/2, 2π/3 and π. Table 2 contains the numerical results based on the
asymptotic expansions (3.4) and (3.11), where in (3.4) we employ the additional results
from (3.5) and (3.6). A comparison between tables 1 and 2 shows that the small-p
expansion (3.4) reproduces six correct significant digits when p 6 0.1. For increasing
p and increasing α the accuracy of the small-p expansion decreases. For example,
at p = 0.4, five correct significant digits are reproduced when α = π/2, whereas the
expansion is accurate to 1.2% when α = 2π/3, and to 2.5% when α = π. Similarly, the
large-p expansion (3.11) is accurate to within 1% for p & 3. The values of α considered
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p W (π/2, p) W (2π/3, p) W (π, p)

0.01 0.996535× 102 0.994508× 102 0.993069× 102

0.05 0.196546× 102 0.194523× 102 0.193086× 102

0.1 0.965819× 101 0.945703× 101 0.931407× 101

0.2 0.467226× 101 0.447747× 101 0.433866× 101

0.3 0.302817× 101 0.285146× 101 0.272669× 101

0.4 0.222387× 101 0.209508× 101 0.201209× 101

0.5 0.175463× 101 0.174266× 101 0.176851× 101

0.6 0.144401× 101 0.169099× 101 0.196752× 101

0.7 0.120222× 101 0.197464× 101 0.277188× 101

0.8 0.962095 0.272237× 101 0.451371× 101

0.9
1.0
2.0 0.446522 0.429129 0.465086
3.0 0.319340 0.309927 0.307161
4.0 0.243823 0.238426 0.235028
5.0 0.196679 0.193276 0.190800
6.0 0.164672 0.162375 0.160607
7.0 0.141566 0.139935 0.138642
8.0 0.124117 0.122913 0.121940
9.0 0.110481 0.109565 0.108814

10.0 0.995351× 10−1 0.988200× 10−1 0.982279× 10−1

Table 2. Asymptotic expansions for W (α, p) with α = π/2, 2π/3 and π. The results for pitch values
up to and including 0.8 are based on the small-p expansion (3.4); the remaining entries are based
on the large-p expansion (3.11).

are sufficient to calculate the vortex velocity for the cases of N = 1, 2, 3, and 4 vortices,
as explained in § 5.2. These values of N cover the majority of applications.

5. Application of the analysis
At a sufficiently large distance behind propellers, wind turbines and hovering, as-

cending or descending rotors – in the so-called ‘far wake’ – the vorticity is concentrated
in N helical tip vortices each of strength Γ , where N is the number of blades. In
addition, there are N hub vortices of the same strength lying along the axis of
rotation. This arrangement of vorticity, with constant pitch, p, and radius R, is the
simplest possible and allows the application of the analysis developed in the previous
sections. (Of course, the cores of the vortices must continue to grow, but we will
defer discussion of this issue.) The circulation Γ in the Biot–Savart expression (2.7)
is taken as positive when power is added to the flow, and negative for wind turbines.
The vortex radius R, introduced in § 2, is now also the radius of the far wake. Note
that the vortex pitch p, defined in (2.2), is dimensionless. In terms of RT , the blade
radius, one has R < RT for rotors and propellers, but R > RT for wind turbines.

5.1. Preliminaries: average velocity and importance of small pitch in the far wake

To apply the present analysis, we need a further result for Ū, the average velocity
within the far wake in the direction of the rotor’s axis of rotation. This result is

Ū

ΩRT
=
NΓ/(ΩR2

T )

2πpR/RT
(5.1)



158 D. H. Wood and J. Boersma

for hovering rotors. In (5.1), Ū and Γ are normalized by Ω, the angular velocity of
the rotor, and RT . These are the usual quantities used for normalization of the results
of hovering rotor experiments. For wind turbines and propellers

Ū

U0

= 1 +
NΓ/(U0RT )

2πpR/RT
. (5.2)

In (5.2), Ū is normalized by U0, the wind speed or forward speed of the propeller,
and lengths are normalized by RT . The scaling used in (5.2) is the conventional one
for wind turbines and propellers. Because it differs from that used for rotors, we
have decided to include the appropriate normalizations for Γ and other quantities
in the expressions, such as (5.1) and (5.2), rather than to introduce new symbols for
differently scaled quantities.

The result (5.1) can be derived in a number of ways. It is a direct consequence
of Hardin’s solution (1982, formula (8)) which is discussed in Appendix A. Note
that the term S1 in Hardin’s solution does not contribute to the average velocity.
The result (5.1) can also be obtained by the following simple argument. Consider a
rectangular contour with sides 2πpR placed along and parallel to the axis of rotation,
and radial extent r. When r > R, and the contour encloses N tip vortices without
intersecting them, the area integral of the vorticity within the contour is NΓ , and
the contributions to the circulation around the rectangle from the two radial legs
cancel. Thus the circulation is 2πpRŪ, where Ū is, for the moment, the velocity
along the axis. Equating the vorticity integral and the circulation gives (5.1) and the
extension to (5.2), by including the wind speed or forward speed of the propeller,
is straightforward. When r < R, there is no circulation around the contour, showing
that Ū is independent of radius in the far wake. Thus a far wake containing helical
tip vortices and straight hub vortices is consistent with the one-dimensional analysis
that leads, for example, to the Betz limit on the power output of wind turbines. It
will be shown in § 5.3 that considerations of the tip vortex pitch and velocity lead to
an expression for the bound vorticity of each blade, when the turbine is operating at
the Betz limit.

Most wake vortices have small pitch. For wind turbines, we assume for the present
that the axial velocity of a tip vortex in the far wake, U, is given by U = (U0 + Ū)/2,
and the circumferential velocity is λRU0/RT , where λ is the tip speed ratio, that is, the
circumferential velocity of the blade tip divided by the wind speed. If the tip vortex
is force-free, then

p =
1 + Ū/U0

2λR/RT
. (5.3)

Now the one-dimensional analysis that leads to the Betz limit is reasonably accurate
near the point of maximum power production (see e.g. Spera 1994), and Ū/U0 ≈ 1/3
and R/RT ≈ 2 at this point. Thus we obtain

p ≈ 1

3λ
. (5.4)

For most two- and three-bladed turbines, maximum power production occurs when
λ is in the range of 7–10. Taking the lower value gives p ≈ 0.05.

There are much more experimental data available for hovering rotors, so that
estimates of magnitude are not needed. For example, the experiment of Leishman,
Baker & Coyne (1996) with a one-bladed rotor gave p = 0.053 – see their table 2,
where pR/RT and R/RT appear as k2 and A, respectively.
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φ

Figure 1. The geometric relationship of the velocities in (5.5) and (5.6). Note that φ = arctan p.

5.2. The velocity of propagation of N vortices in the far wake

Consider again the arrangement of N identical helical vortices, spaced 2π/N radians
apart. The binormal velocity Ub induced at any of the helices is given by the sum
of the self-induced component, as determined by BW, and the contributions of the
remaining N−1 vortices, found in § 2. However, as suggested by the appearance of the
axial velocity of the tip vortex in (5.3), it is not the binormal velocity that is most useful
in practice; rather it is the axial and circumferential velocities, U and W , respectively.
We now determine Ub, U and W . If the far wake is force-free, then U is not the axial
component of Ub, for the reason given by Saffman (1992, § 11.2) in his analysis of a
helix of large pitch. Any difference between the velocity of a material point on the
vortex and the self-induced velocity must lie in the direction of the helix. Furthermore,
U and W are related kinematically to σ, the rate of rotation of the helix. Thus

U = pRσ = (p2 + 1)1/2Ub (5.5)

and

W = Rσ. (5.6)

The relationship of Ub to U and W is illustrated in figure 1. We now determine
Ub, beginning with BW (3.5) for the self-induced contribution in the form of CMS ;
here, the subscript denotes that the result stems from applying the Moore–Saffman
procedure, as described in Ricca (1994, § 3) using the same notation. By adding the
contributions of the remaining N − 1 vortices, we find

Ub =
Γ

4πR

[
N−1∑
j=1

Ib

(
2πj

N
, p

)
+

CMS

p2 + 1
+

1

p2 + 1
log

1

ε

]
,

where Ib is given by (2.8). Here, we also included the contribution from the curvature
singularity, which in the Moore–Saffman procedure is provided by the osculating
circular vortex whose radius is the radius of curvature of the helix. The curvature
term involving ε = a/[(p2 + 1)R], where a is the vortex core radius, stems from Ricca
(1994, formula (3.14)). The term involving summation represents the effects of the
extra N − 1 vortices. This term will be zero in the case of a single helix (N = 1).
Substitution of (2.9) and BW (3.5) gives

Ub =
Γ

4πR

[
(p2 + 1)1/2

{
W (p) +

N−1∑
j=1

W

(
2πj

N
, p

)}
− 2Np

(p2 + 1)1/2

+
1

p2 + 1
{− 1

4
+ log 2 + 2p2 − 1

2
log(p2 + 1)}+

1

p2 + 1
log

1

ε

]
, (5.7)
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where W (p) and W (α, p) are given by (2.1) and (2.10). The osculating vortex must
satisfy ε� 1, and is assumed to have uniform vorticity, but it appears that the details
of the vortex structure only have a small effect on its binormal velocity. This is
demonstrated by BW who establish the small difference between CMS and CH where
the latter is determined from Hardin’s (1982) analysis for a line vortex. Furthermore,
the vortex structure cannot influence the contributions from the remaining N − 1
vortices, provided ε� 1, and presumably, a/p� 1.

Using the results of table 1 in (5.7) allows Ub to be evaluated for a wide range of
pitch values. Next, U and W are simply determined by means of (5.5) and (5.6). At
sufficiently small pitch, Ub can also be found from its small-p expansion

Ub =
Γ

4πR

[
Np−1(p2 + 1)1/2 − log(N/p)

p2 + 1
+

3

4
− 2Np

(p2 + 1)1/2

+

(
3

8

ζ(3)

N2
− 5

4

)
p2 + O(p4)

]
(p ↓ 0) (5.8)

where the curvature term has been deleted. The expansion (5.8) is obtained by
inserting into (5.7) the small-p expansions of W (α, p) and W (p) from (3.4) and BW
(4.22), followed by the use of (3.7) to simplify the sum of Clausen functions Cl3.
Likewise, the large-p expansion of Ub can be found from (5.7) by inserting the large-p
expansions of W (α, p) and W (p) from (3.11) and BW (4.9).

5.3. Comparison with experiments

By setting W (α, p) ≈ p−1 and W (p) ≈ p−1, which are the leading terms in the small-p
expansions (3.4) and BW (4.22), we have, to leading order, for small p,

U

ΩRT
=
NΓ/(ΩR2

T )

4πpR/RT
=

Ū

2ΩRT
(5.9)

by (5.1) for hovering rotors, and

U

U0

= 1 +
NΓ/(U0RT )

4πpR/RT
=

1 + Ū/U0

2
(5.10)

by (5.2) for wind turbines and propellers.
Note that (5.10) was used as a preliminary in obtaining the estimate (5.3). Thus,

we find that the usual assumption that the axial velocity of the vortex is the average
of the velocities within and outside the wake, is only an approximation and can only
be justified at sufficiently small pitch.

We now compare (5.7) with the available experimental data, beginning with the
single, hovering rotor data of Leishman et al. (1996), mentioned earlier. For N = 1
we have

U =
Γ

4πR(p2 + 1)1/2

[
CMS + log

1

ε

]
. (5.11)

Now we assume that the angular velocity of the vortex (σ in (5.5), (5.6)) is also the
angular velocity of the rotor, Ω, so that pR = U/Ω from (5.5). To eliminate Γ from
(5.11) we use (5.1) with N = 1, for the average velocity in the far wake. By combining
these results we find

2ΩR

Ū
=

1

(p2 + 1)1/2

[
CMS + log

1

ε

]
. (5.12)

From Leishman et al. (1996, figure 7), the velocity in the wake is reasonably uniform
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with radius, and Ū/U0 ' 0.073 when x/RT = 0.399, where x is the streamwise
coordinate originating at the blades, the furthest downstream position measured.
However, the relation between the wake radius and the vortex age in Leishman
et al. (1996, formula (2)), indicates that the wake has not contracted fully by this
position. From this relation and employing conservation of mass, we may estimate
Ū/(ΩRT ) ≈ 0.0786. From Leishman et al. (1996, figure 14) we judge that ε ≈ 0.0161
in (5.12). Furthermore, R/RT = 0.78 from Leishman et al. (1996, table 2) which fixes
the left-hand side of (5.12). Using the small-p expansion of CMS from BW (4.23), the
expression (5.12) can be written as a nonlinear equation in p. As demonstrated in
BW, table 1, the small-p expansion is accurate to six digits up to p ∼ 0.05. Solving
the equation by use of a standard root-finding algorithm gives pR/RT = 0.0436,
compared to the measured value of 0.041 recorded as k2 in Leishman et al. (1996,
table 2). In order to make pR/RT equal to the measured k2, the value of ε would have
to be increased to 0.045, which is unrealistically large. If we ignore the curvature term
and take into account only the p−1-term in the expansion of CMS , then the estimate
for pR/RT changes to pR/RT = Ū/(2ΩRT ) = 0.0393, which is 10% smaller than the
higher-order estimate. This is due partly to a partial cancellation of the curvature
term by the higher-order pitch terms. Thus the approximations embodied in (5.9)
and (5.10) appear to be reasonably accurate at typical values of pitch for hovering
rotors and wind turbines. Substitution into (5.1) of Ū estimated as described above
and of the measured value pR/RT = 0.041 provides an estimate for the circulation
Γ . This gives Γ/(ΩR2

T ) = 0.020 which compares to values around 0.012 determined
from the circulation around the tip vortices; see Leishman et al. (1996, figure 13)
and Bhagwat & Leishman (2000a, figure 14). Interestingly, the estimate is closer to
the measured bound circulation of the blade; see e.g. Bhagwat & Leishman (2000a,
figure 8). Unfortunately, there are no far-wake data for wind turbines with which to
compare the present analysis.

Propellers tend to involve pitch values larger than those in the far wakes of hovering
rotors and wind turbines. Favier & Maresca (1984) and Favier, Ettaouil & Maresca
(1989) present tip vortex and other measurements in the wake of a four-bladed
propeller for a wide range of operating conditions. For a blade mean pitch angle of
32.5◦ and advance ratio J = π/λ = 0.89, Favier & Maresca (1984, figure 14) gives
pR/RT = 0.337, or p = 0.383 by use of Favier & Maresca (1984, formula (1)) for
the wake contraction which gives R/RT = 0.879. The value of p is too large for the
small-p expansion to be accurate. The sum in (5.7) was evaluated numerically for
p = 0.383 and the curvature term ignored, leading to

U

U0

= 1 + 0.5862
Γ

U0R
=
pλR

RT
= 1.19, (5.13)

using (5.3), (5.5) and (5.10). Here, U0 is the forward speed of the propeller (17.2 m s−1).
This gives Γ/(ΩR2

T ) = 0.080. The circulation was not measured in these experiments,
but Favier et al. (1989, figure 11a) shows the computationally predicted bound
circulation for this operating condition. The maximum value of Γ/(ΩR2

T ) is 0.045,
which compares to the estimate of 0.050 in Favier & Maresca (1984, figure 25) for
the same operating conditions.

From the comparison with the measurements behind a hovering rotor and a
propeller, it appears that the present analysis overestimates the circulation of the tip
vortex. There are at least two possible reasons for this. First, the curvature term would
act to reduce the estimated Γ for the propeller, for which the core radius was not
measured. To reduce Γ/(ΩR2

T ) from 0.080 to 0.050, however, would require ε ≈ 0.009
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Figure 2. The axial velocity of N vortices as a function of their pitch. For visual aid, the solid and
dashed lines join the results for N = 1 and N = 4, respectively.

in (5.7), which would appear to be unrealistically small. Secondly, and more likely, the
assumed wake structure is too simplistic, in that some vorticity in the actual wake lies
outside the tip and hub vortices. The significant radial variation in the axial velocity
profiles in Favier & Maresca (1984, figure 17) suggests strongly that this is the case.

We now discuss the effect of N on the vortex velocity and investigate the range of
p over which the approximation leading to (5.9) and (5.10) may be made. The axial
velocity U calculated from (5.5) and (5.7) without the curvature term, by use of the
results in table 1, is shown in figure 2. The ratio 4πRpU/(NΓ ) is plotted as a function
of the vortex pitch p, for N = 1, 2, 3 and 4. This ratio is unity if the expression
between the square brackets in (5.7) is equal to N/p. Using (5.8) for Ub at small pitch
gives the following small-p expansion:

4πRpU

NΓ
= 1− p

N

log(N/p)

(p2 + 1)1/2
+

3

4

p

N
− p2

+
1

N

(
3

8

ζ(3)

N2
− 7

8

)
p3 + O(p5) (p ↓ 0). (5.14)

For example, at p = 0.05, the ratio increases from 0.88 for N = 1 to 0.95 for N = 4.
Generally, the accuracy of (5.9) and (5.10) increases with increasing N, but by far the
largest change occurs between N = 1 and N = 2. Including the effects of curvature
means that U will be slightly less than indicated by the right-hand side of (5.9)
where Γ is positive, but greater than (5.10) for wind turbines. The relatively small
effect of the vortex core radius on the induced velocity means that the effects of its
growth, which must continue in the far wake while the vortex radius and pitch remain
constant, will always be of higher order. In practical terms, the far wake must exist
over a sufficiently large distance for its effects on the blades to be representable by a
wake of infinite extent. It may well be that the far wake eventually succumbs to an
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instability much like the long-wavelength Crow instability of aircraft trailing vortices,
as suggested by the calculations of Gupta & Loewy (1974) and Bhagwat & Leishman
(2000b).

There does not appear to be any necessary connection between σ and Ω (the
angular velocities of the vortex and the rotor, respectively), even though their equality
is assumed in all experimental studies, and has been assumed in the analysis above.
That some caution is needed in making that assumption, is indicated by U changing
sign in figure 2 at around p = 1 for all values of N. In other words, helices of small
pitch rotate in the opposite direction to those at larger pitch. It is likely that there is
a range of p for which the approximation σ = Ω is valid and this range is a subset of
that for which U ∼ p−1. Experimentally, data sampling is usually triggered by a blade
passing an arbitrary point, allowing the three-dimensional structure to be obtained
from ensemble averages of the stationary measurements. The product of Ω and the
time after triggering is assumed to be the azimuthal ‘location’ of the measurement
relative to the position of the blade at triggering. Any consistent difference between
σ and Ω would prevent the details of the tip vortices from appearing in the ensemble
averages, except in the unlikely event that σ were an integer multiple of Ω.

Assuming that σ = Ω, and that U is sufficiently well represented by the leading
p−1-term of its small-p expansion, the present analysis can be used in another way to
estimate Γ for wind turbines. By combining (5.2) and (5.3), it follows that

Ū

U0

=

√
1 +

NλΓ/(U0RT )

π
. (5.15)

To optimize power output, for example, we set Ū/U0 = 1/3 and obtain

Γm

U0RT
= − 8π

9Nλm
, (5.16)

where the subscript m indicates values for maximum performance. In other words,
having chosen N and λm, the expression (5.16) determines the circulation required for
optimum performance. The result (5.16) can also be derived from an entirely different
basis by balancing the axial momentum in the air flowing over the blades against the
lift generated on an ‘ideal rotor’. As shown in Spera (1994, equation (5–44)), the result
is equivalent to (5.16). This provides further evidence of the consistency between the
analysis of multiple helical vortices and the behaviour of simple wakes.

5.4. The accuracy of wake modeling

Even in sophisticated computer models of wind turbines, propellers, and rotors, the
vorticity in the far wake is often represented by straight vortex segments. For example,
Xu & Sankar (2000) describe a computational study of wind turbines in which a
‘Navier–Stokes’ solution in the vicinity of the blades is combined with an ‘inviscid
zone’ including the far wake where the vorticity is represented by freely convecting
straight segments. Similar segments were used in the study of the stability of helical
vortex wakes by Bhagwat & Leishman (2000b). The straight-segment approximation
is computationally attractive, but has often been criticised on the grounds that the
curvature singularity is not automatically captured. This has led to the formulation of
more complex alternatives, such as the ‘basic curved vortex segment’ of Bliss, Teske
& Quackenbush (1987). Its accuracy was assessed largely by comparison with the
velocity field of vortex rings: the translation of vortex rings is due almost entirely to
the curvature term. However, the present study suggests that the curvature term is
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rarely dominant for single and multiple helical vortices, so the comparison may well
be inappropriate.

The results of table 1 were used to assess the accuracy of the straight-segment
approximation over a wide range of pitch, Wood & Li (2001). A simple correction
was developed for the effects of vortex curvature on the self-induced velocity. The error
in the approximation at small pitch was caused mainly by the segments that end or
begin in line with the point at which the velocity is to be determined. These segments
do not contribute to Ub. As a consequence, the straight-segment approximation is
only first-order accurate at small numbers of, say, segments per revolution of the
helix, improving to third order at much higher numbers. Neither of these results
is obtainable by comparison to the velocity field of a vortex ring, for which the
straight-segment approximation is second-order accurate, e.g. Bhagwat & Leishman
(2001b).

6. Conclusions
In this paper we have extended the determination of the velocity of a single,

constant-diameter helical vortex to include the effects of N − 1 additional helical
vortices, spaced 2π/N radians apart, where N > 2. This arrangement approximates
the tip vortices in the far wake of wind turbines, propellers, and ascending, descending,
or hovering rotors, where N is the number of blades.

The contributions from the additional vortices are determined from a straightfor-
ward application of the Biot–Savart law, resulting in an infinite integral – for W (α, p)
in (2.10) – that, apparently, cannot be evaluated in closed equation Based on a Mellin–
Barnes integral representation of W (α, p), the asymptotic expansions are determined
for small and for large pitch, p. At large pitch, the Kelvin limit, the additional vortices
make a significant change to the induced velocity in that the leading term in W (α, p) at
large pitch is p−1 from (3.11), whereas the leading term in W (p) is proportional to p−3

from BW (4.9). At small pitch, the leading p−1-term found for a single vortex carries
over to a term N/p for multiple vortices. The spacing does not have a significant
effect, partly because of the symmetry constraint of (2.11) which means, for example,
that the second and fourth vortices induce the same velocity on the first when N = 4.

It is demonstrated that the small-p limit is of practical significance for wind turbine
and hovering rotor applications. Much more experimental information is available
for the latter case and it is shown that the present analysis predicts the vortex pitch
and circulation with reasonable accuracy. It is also shown that a wake consisting only
of helical tip vortices and hub vortices lying along the axis of rotation is consistent
with the one-dimensional wake analysis used to determine propeller thrust and wind
turbine power output. If the pitch is small enough for the term N/p to dominate
the vortex velocity, then that velocity is the average of the mean velocity inside and
the velocity outside the wake. For a wind turbine, this leads to the simple expression
(5.16) for the bound circulation when the power output is maximized. The result (5.16)
can also be derived from a completely different basis: simple blade-element theory
combined with one-dimensional wake analysis. This coincidence provides further
evidence of the consistency of the present analysis with the standard methods of
evaluating turbine performance.

The comparison of the present analysis to the available experimental data con-
centrated on the case of small values of the pitch. There were, however, three areas
where larger values of p are important. The first was in the propeller experiment
considered in § 5.3; most propeller applications involve values of p for which the
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small-p approximation for the vortex velocity is not sufficiently accurate. Secondly,
figure 2 shows that the vortex velocity changes sign with increasing pitch for all values
of N (6 4) that were considered. Since the sign of U is equal to the sign of σ on
account of (5.5), the direction of rotation of the vortices must also change. Therefore
the commonly assumed equality between the angular velocities of the blades and of
the helical vortices they produce, is not universally valid. Thirdly, it was pointed out
in § 5.4 that the results in table 1 can be used to assess the accuracy of various dis-
cretization schemes employed to model trailing helical vortices in free-wake computer
models of wind turbines, propellers and rotors.

D. H. W.’s contribution was supported by the Australian Research Council. We
thank Professor J. G. Leishman and Dr Christian Maresca for their comments on the
applications of the analysis.

Appendix A. The induced velocity from Hardin’s (1982) solution
It is shown here that Hardin’s (1982) solution for the interior flow (radius r < 1) of

a helical line vortex is reducible to (2.9). Take r = 1− ε where ε is the positive radial
distance from the point at which the velocity is required, to the helix. This definition
of ε is not to be confused with that used in § 5. The current definition is the only one
used in this Appendix, and is not used elsewhere. Hardin’s solution (1982, formula
(8)) involves the Kapteyn series

S1(R(1− ε), α) =

∞∑
m=1

mK ′m(m/p)Im((1− ε)m/p) cos(mα), (A 1)

where Im(·) and Km(·) are modified Bessel functions of order m and the prime denotes
differentiation with respect to the argument. Introduce the notation

S(a, b, α) =

∞∑
m=1

Km(ma)Im(mb) cos(mα), a > b > 0. (A 2)

Then S1(R(1 − ε), α) is equal to ∂S(a, b, α)/∂a with a = 1/p, b = (1 − ε)/p. By an
analysis similar to that of Boersma & Yakubovich (1998) we deduce

S(a, b, α) =
1

4

∑
±

∫ ∞
0

[t2 + a2 + b2 − 2ab cos(t± α)]−1/2 dt

− 1

2π

∫ ∞
0

dt

∫ π

0

(t2 + a2 + b2 − 2ab cos s)−1/2 ds. (A 3)

Differentiation with respect to a yields

∂S(a, b, α)

∂a
= −1

4

∑
±

∫ ∞
0

a− b cos(t± α)
[t2 + a2 + b2 − 2ab cos(t± α)]3/2

dt

+
1

2π

∫ ∞
0

dt

∫ π

0

a− b cos s

(t2 + a2 + b2 − 2ab cos s)3/2
ds. (A 4)

The second (double) integral has the value 1/2a according to Boersma & Yakubovich
(1998), while the first term can be rewritten to give

∂S(a, b, α)

∂a
=

1

2a
− 1

4

∫ ∞
−∞

a− b cos(t+ α)

[t2 + a2 + b2 − 2ab cos(t+ α)]3/2
dt. (A 5)
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Substitute a = 1/p, b = (1− ε)/p, or rather b = 1/p, since ε ↓ 0. Then we obtain

lim
ε↓0 S1(R(1− ε), α) =

p

2
− 1

4

∫ ∞
−∞

(2/p) sin2((t+ α)/2)

[t2 + (4/p2) sin2((t+ α)/2)]3/2
dt

=
p

2
− p2

8

∫ ∞
−∞

sin2(t+ α/2)

[ p2t2 + sin2(t+ α/2)]3/2
dt

=
p

2
− p2

4
W (α, p), (A 6)

on account of (2.10). Hardin’s solution (1982, equation (8)) comprises expressions for
the velocity components uφ, w, in cylindrical coordinates in terms of S1. By changing
to our notation it is found that Ib(α, p) in (2.7) is given by

Ib(α, p) =
w − puφ

(p2 + 1)1/2

/
Γ

4πR
=

2

(p2 + 1)1/2

[
1

p
− 2(p2 + 1)

p2
S1

]
. (A 7)

Finally, by inserting the value of S1 from (A 6) we recover (2.9).

Appendix B. A Mellin–Barnes integral representation of W (α, p)

By use of

sin2(t+ α/2)− t sin(t+ α/2) cos(t+ α/2)

[ p2t2 + sin2(t+ α/2)]3/2
=

d

dt

[
t

[ p2t2 + sin2(t+ α/2)]1/2

]
in the integrand of (2.10), we express the integral W (α, p) as

W (α, p) =
1

p
+

1

2

∫ ∞
−∞

t sin(t+ α/2) cos(t+ α/2)

[ p2t2 + sin2(t+ α/2)]3/2
dt

=
1

p
+W1(p) +W2(p), (B 1)

where

W1(p) =
1

2

∫ π

0

{
t sin(t+ α/2) cos(t+ α/2)

[ p2t2 + sin2(t+ α/2)]3/2
+
t sin(t− α/2) cos(t− α/2)

[ p2t2 + sin2(t− α/2)]3/2

}
dt (B 2)

and W2(p) is the integral over [π,∞) with the same integrand. Proceeding as in BW,
§ 4, we determine the Mellin transforms of W1(p) and W2(p), defined by

M{W1,2(p)} =

∫ ∞
0

W1,2(p)p
z−1 dp (B 3)

for complex z. As a preliminary we establish the auxiliary result

M{(p2 + a2)−ν} = az−2ν Γ(z/2)Γ(ν − z/2)

2Γ(ν)
, (B 4)

valid for 0 < Re(z) < 2ν. Here, Γ(·) denotes the gamma function. By use of (B 4) with
ν = 3/2 we find

M{W1,2(p)} =
Γ(z/2)Γ(3/2− z/2)

2Γ(3/2)
L1,2(z), (B 5)
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where

L1(z) =
1

2

∫ π

0

{
sin(t+ α/2) cos(t+ α/2)| sin(t+ α/2)|z−3

+ sin(t− α/2) cos(t− α/2)| sin(t− α/2)|z−3
} dt

tz−1
(B 6)

and L2(z) is the integral over [π,∞) with the same integrand. The integrals for L1(z)
and L2(z) are convergent for 1 < Re(z) < 3 and Re(z) > 2, respectively. Accordingly,
L1(z) is analytic for 1 < Re(z) < 3, while L2(z) is analytic for Re(z) > 2. We now
show that L1(z) and L2(z) can be analytically continued as meromorphic functions in
the complex z-plane.

Through an integration by parts in (B 6) we deduce

L1(z) =
p(t)− [sin(α/2)]z−1

(z − 1)tz−1

∣∣∣∣π
0

+

∫ π

0

{p(t)− [sin(α/2)]z−1}dt
tz
, (B 7)

where
p(t) = 1

2
{| sin(t+ α/2)|z−1 + | sin(t− α/2)|z−1}. (B 8)

Since
p(t)− [sin(α/2)]z−1 = O(t2) (t ↓ 0)

the first term on the right of (B 7) vanishes if 1 < Re(z) < 3, while the integral in
(B 7) is convergent for 0 < Re(z) < 3. Thus we are led to the representation

L1(z) =

∫ π

0

{p(t)− [sin(α/2)]z−1}dt
tz
, (B 9)

which provides the analytic continuation of L1(z) to the strip 0 < Re(z) < 3.
A similar integration by parts in the integral for L2(z) yields

L2(z) = − [sin(α/2)]z−1

(z − 1)πz−1
+

∫ ∞
π

p(t)

tz
dt. (B 10)

Here, the first term on the right is analytic except for a simple pole at z = 1 with
residue −1, while the integral is convergent for Re(z) > 1. Since p(t) in (B 8) is
periodic with period π, we may reduce the integral in (B 10) to∫ ∞

π

p(t)

tz
dt =

∞∑
k=0

∫ (k+2)π

(k+1)π

p(t)

tz
dt =

∫ π

0

p(t)

∞∑
k=0

1

[t+ (k + 1)π]z
dt

=

∫ π

0

p(t)π−zζ(z, 1 + t/π) dt, (B 11)

valid for Re(z) > 1; here, ζ with two arguments denotes the generalized zeta function,
extensively discussed in Erdélyi et al. (1953, § 1.10). As a function of z, ζ(z, 1 + t/π)
is analytic in the whole z-plane, except for a simple pole at z = 1 with residue 1.
Consequently, the final integral in (B 11) is analytic for Re(z) > 0, except for a
simple pole at z = 1 with residue equal to

∫ π
0
π−1 dt = 1, because p(t) = 1 for z = 1.

This singularity is precisely compensated by the first term on the right of (B 10). By
inserting (B 11) into (B 10) we are led to the representation

L2(z) = − [sin(α/2)]z−1

(z − 1)πz−1
+

∫ π

0

p(t)π−zζ(z, 1 + t/π) dt, (B 12)

which is valid and analytic for Re(z) > 0.
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Next we combine the representations (B 9) and (B 12). For 0 < Re(z) < 1 we have
in (B 9),

−
∫ π

0

[sin(α/2)]z−1 dt

tz
=

[sin(α/2)]z−1

(z − 1)πz−1

which cancels with the first term on the right of (B 12). By use of the relation

1

tz
+ π−zζ(z, 1 + t/π) = π−zζ(z, t/π)

and by inserting the value of p(t) from (B 8), we obtain the following representation
for L(z) as the sum of L1(z) and L2(z):

L(z) =
1

2

∫ π

0

{| sin(t+ α/2)|z−1 + | sin(t− α/2)|z−1} π−zζ(z, t/π) dt, (B 13)

valid and analytic for 0 < Re(z) < 1.
We now employ Hurwitz’s formula for ζ(z, t/π):

ζ(z, t/π) = 2zπz−1Γ (1− z)
∞∑
n=1

nz−1 sin(2nt+ πz/2), (B 14)

taken from Erdélyi et al. (1953, formula 1.10(6)). Inserting (B 14) into (B 13) and
integrating term by term, leads to integrals of the form

In =
1

2

∫ π

0

{| sin(t+ α/2)|z−1 + | sin(t− α/2)|z−1} sin(2nt+ πz/2) dt, (B 15)

where n = 1, 2, 3, . . . . The integrand in (B 15) is periodic with period π, and the
integration is over one period. By properly shifting the integration interval we deduce

In =
1

2

∫ π

0

(sin t)z−1[sin(2nt− nα+ πz/2) + sin(2nt+ nα+ πz/2)] dt

= cos(nα) cos(πz/2)

∫ π

0

(sin t)z−1 sin(2nt) dt

+ cos(nα) sin(πz/2)

∫ π

0

(sin t)z−1 cos(2nt) dt. (B 16)

The first of the latter two integrals vanishes because the integrand is odd with
respect to t = π/2. The final integral is evaluated by means of Erdélyi et al. (1953,
equation 1.5(29)), yielding∫ π

0

(sin t)z−1 cos(2nt) dt =
π

2z−1

Γ(z)(−1)n

Γ(1/2 + z/2 + n)Γ(1/2 + z/2− n) . (B 17)

By collecting the previous results we find that the term-by-term integration in (B 13)
leads to

L(z) = 2Γ(z)Γ(1− z) sin(πz/2)

∞∑
n=1

(−1)nnz−1 cos(nα)

Γ(1/2 + z/2 + n)Γ(1/2 + z/2− n)

=

∞∑
n=1

Γ(1/2− z/2 + n)

Γ(1/2 + z/2 + n)

cos(nα)

n1−z (B 18)
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by use of the reflection formula for the gamma function. Since

Γ(1/2− z/2 + n)

Γ(1/2 + z/2 + n)
= n−z

[
1 + O(n−2)

]
(n→∞) (B 19)

by Erdélyi et al. (1953, formula 1.18(4)), the series in (B 18) compares to∑∞
n=1 cos(nα)/n and is convergent. The convergence can be improved by subtracting

and adding
∞∑
n=1

cos(nα)

n
= − log[2 sin(α/2)] (0 < α < 2π) (B 20)

whereupon

L(z) = − log[2 sin(α/2)] + L∗(z), (B 21)

L∗(z) =

∞∑
n=1

{
Γ(1/2− z/2 + n)

Γ(1/2 + z/2 + n)

cos(nα)

n1−z − cos(nα)

n

}
. (B 22)

In view of (B 19), the series (B 22) compares to
∑∞

n=1 cos(nα)/n3 and so is convergent
for all z.

The representation (B 18), or (B 21)–(B 22), for L(z) is valid, first for 0 < Re(z) < 1,
and next for all complex z by analytic continuation. The terms in the final series in
(B 18) have simple poles at z = 2k + 1, k = 1, 2, 3, . . .. Thus it follows that L(z) is
analytic in the whole z-plane, except for simple poles at z = 2k + 1, k = 1, 2, 3, . . ..
We now return to the Mellin transforms M{W1,2(p)} as given by (B 5). The factor
Γ(z/2)Γ(3/2 − z/2) has simple poles at z = −2k, k = 0, 1, 2, . . ., and at z = 2k + 1,
k = 1, 2, 3, . . .. Consequently, M{W1(p) + W2(p)} is analytic in the whole z-plane,
except for simple poles at z = −2k, k = 0, 1, 2, . . ., and double poles at z = 2k + 1,
k = 1, 2, 3, . . .. This leaves the strip 0 < Re(z) < 3 as the strip of analyticity of
the Mellin transform M{W1(p) + W2(p)} = M{W (α, p) − 1/p}. By means of the
Mellin inversion formula we arrive at the following representation of W (α, p) by a
Mellin–Barnes integral:

W (α, p) =
1

p
+

1

2πi

∫ c+i∞

c−i∞
Γ(z/2)Γ(3/2− z/2)

2Γ(3/2)
L(z)p−z dz, 0 < c < 3, (B 23)

in which L(z) is given by (B 18). By substitution of (B 21) for L(z) and by use of the
inverse of the transform (B 4) with ν = 3/2, we obtain the alternative representation

W (α, p) =
1

p
− log[2 sin(α/2)] (p2 + 1)−3/2

+
1

2πi

∫ c+i∞

c−i∞
Γ(z/2)Γ(3/2− z/2)

2Γ(3/2)
L∗(z)p−z dz, 0 < c < 3, (B 24)

in which L∗(z) is given by (B 22). These representations are used in § 3 to establish
the asymptotics of W (α, p) both for small p and for large p.

Finally we consider the limit case α ↓ 0 of W (α, p). From (B 24) we infer

lim
α↓0 [W (α, p) + log[2 sin(α/2)](p2 + 1)−3/2]

=
1

p
+

1

2πi

∫ c+i∞

c−i∞
Γ(z/2)Γ(3/2− z/2)

2Γ(3/2)
P (z)p−z dz, 0 < c < 3, (B 25)
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where

P (z) = lim
α↓0 L

∗(z) =

∞∑
n=1

{
Γ(1/2− z/2 + n)

Γ(1/2 + z/2 + n)

1

n1−z −
1

n

}
, (B 26)

in accordance with the notation P (z) from BW (A 12). We want to express the limit
(B 25) in terms of the integral W (p), given by (2.1). To that end, we compare (B 25)
to the Mellin–Barnes integral representation of W (p), taken from BW (4.14), namely

W (p) = (p2 + 1)−3/2 log(p/2)

+
1

2πi

∫ c+i∞

c−i∞
Γ(z/2)Γ(3/2− z/2)

2Γ(3/2)
R(z)p−z dz, 1 < c < 3, (B 27)

in which

R(z) = − 1

z − 1
+ ψ(1/2− z/2) + E + 2 log 2 + P (z)

= P (z) + 2 + ψ(3/2− z/2)− ψ(3/2) +
1

z − 1
. (B 28)

The first line of (B 28) stems from BW (4.12); E = 0.5772 . . . is Euler’s constant,
and ψ(z) = Γ′(z)/Γ(z). The second line of (B 28) follows by use of some standard
properties of the ψ-function. By combining (B 25) and (B 27) we deduce

lim
α↓0
[
W (α, p) + log[2 sin(α/2)] (p2 + 1)−3/2

]
= p−1 +W (p)− (p2 + 1)−3/2 log(p/2)− 1

2πi

∫ c+i∞

c−i∞
Γ(z/2)Γ(3/2− z/2)

2Γ(3/2)

×
[
2 + ψ(3/2− z/2)− ψ(3/2) +

1

z − 1

]
p−z dz, (B 29)

in which 1 < c < 3. The latter integral is recognized as an inverse Mellin transform.
By inversion of the transform (B 4) and of its derivative with respect to ν, at ν = 3/2,
we find

1

2πi

∫ c+i∞

c−i∞
Γ(z/2)Γ(3/2− z/2)

2Γ(3/2)

[
2 + ψ(3/2− z/2)− ψ(3/2)

]
p−z dz

= (p2 + 1)−3/2[2− log(p2 + 1)], 0 < c < 3. (B 30)

The remaining integral in (B 29) is evaluated by shifting the integration path Re(z) = c
over the pole at z = 1 to Re(z) = c′, where 0 < c′ < 1. Thus we obtain

1

2πi

∫ c+i∞

c−i∞
Γ(z/2)Γ(3/2− z/2)

2Γ(3/2)

p−z

z − 1
dz

=
1

p
− 1

2πi

∫ c′+i∞

c′−i∞
Γ(z/2)Γ(1/2− z/2)

2Γ(1/2)
p−z dz = p−1 − (p2 + 1)−1/2, (B 31)

based on inversion of the transform (B 4) with ν = 1/2. Substitution of (B 30) and
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(B 31) into (B 29) yields

lim
α↓0
[
W (α, p) + log[2 sin(α/2)](p2 + 1)−3/2

]
= W (p) + (p2 + 1)−3/2[ p2 − 1 + log 2 + log(p2 + 1)− log p], (B 32)

which proves the limit result stated in (2.12).
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Erdélyi, A., Magnus, W., Oberhettinger, F. & Tricomi, F. G. 1953 Higher Transcendental
Functions, Vol. 1. McGraw-Hill.

Favier, D., Ettaouil, A. & Maresca, C. 1989 Numerical and experimental investigation of isolated
propeller wakes in axial flight. J. Aircraft 26, 837–846.

Favier, D. & Maresca, C. 1984 Etude du sillage 3D d’une helice aerienne. In Aerodynamics and
Acoustics of Propellers, AGARD-CP-363, pp. 15-1–15-22.

Gupta, B. P. & Loewy, R. G. 1974 Theoretical analysis of the aerodynamic stability of multiple,
interdigitated helical vortices. AIAA J. 12, 1381–1387.

Hardin, J. C. 1982 The velocity field induced by a helical vortex filament. Phys. Fluids 25, 1949–1952.

Kuibin, P. A. & Okulov, V. L. 1998 Self-induced motion and asymptotic expansion of the velocity
field in the vicinity of a helical vortex filament. Phys. Fluids 10, 607–614.

Leishman, J. G., Baker, A. & Coyne, A. 1996 Measurements of rotor tip vortices using three-
component laser-Doppler velocimetry. J. Am. Hel. Soc. 41, 342–353.

Lewin, L. 1981 Polylogarithms and Associated Functions. North Holland.

Moore, D. W. & Saffman, P. G. 1972 The motion of a vortex filament with axial flow. Phil. Trans.
R. Soc. Lond. A 272, 403–429.

Ricca, R. L. 1994 The effect of torsion on the motion of a helical vortex filament. J. Fluid Mech.
273, 241–259.

Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.

Spera, D. A. (Ed.) 1994 Wind Turbine Technology: Fundamental Concepts of Wind Turbine Engin-
eering. ASME Press.

Wood, D. H. & Li, D. 2001 How accurately is a helical vortex represented by straight segments?
AIAA J. (submitted).

Xu, G. & Sankar, L. N. 2000 Computational study of horizontal axis wind turbines. J. Solar Energy
Engng 122, 35–39.


